New Literature Announcement

It is becoming increasingly important to measure the energy of fuels formed by complex mixtures of combustible and non-combustible gases and vapors that vary in concentration or composition over time due to changing conditions. Non-traditional fuel sources – whether they are the undesirable by-products of chemical processes that must be destroyed so they are not released into the atmosphere, or fuels used as alternative energy sources from landfills, biomass, and the like - present some measurement challenges.

Perhaps it is the rate of change. Or a wide range of water vapor at different process temperature. Maybe the combustibles vary widely in composition under different process conditions. Perhaps the heating value itself varies over a wide range, very lean at some times and very rich at others. In these cases, measuring the calorific value can be difficult.

For fuel mixtures, the measurement should be fast and continuous with a universal response to any gaseous fuels over a wide measurement range. A heated sampling handling system is essential. In addition an analyzer should have a fast response time so it can quickly respond and activate controls for the optimization of gas-blending. Applications include flare stacks, bio-fuels, turbine engines, and feed-forward control.

Read the entire white paper

Add new comment

Filtered HTML

  • Web page addresses and e-mail addresses turn into links automatically.
  • Allowed HTML tags: <a> <em> <strong> <cite> <blockquote> <code> <ul> <ol> <li> <dl> <dt> <dd>
  • Lines and paragraphs break automatically.

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Enter the characters shown in the image.